Search results for "Mathematical problem"
showing 10 items of 17 documents
MOTIVACIÓN Y ESTILO ATRIBUCIONAL SOBRE EL RENDIMIENTO ACADÉMICO EN EDUCACIÓN INFANTIL
2016
El presente trabajo tiene como objetivo examinar el poder predictivo de variables del sistema motivacional sobre las habilidades iniciales de lectura y matemáticas en una muestra de niños de Educación Infantil. Participaron 209 preescolares (5-6 años) y sus maestros. Se evaluaron las habilidades matemáticas de conteo, conocimiento de los números, cálculo y resolución de problemas. Para determinar el rendimiento en lectura se administraron tareas de identificación de letras y de lectura de palabras. Respecto al sistema motivacional, se analizaron las variables de competencia-motivación, atención-persistencia y actitud hacia el aprendizaje, así como las dimensiones de internalidad, globalida…
On the Background to Hilbert’s Paris Lecture “Mathematical Problems”
2018
Much has been written about the famous lecture on “Mathematical Problems” (Hilbert 1901) that David Hilbert delivered at the Second International Congress of Mathematicians, which took place in Paris during the summer of 1900 (Alexandrov 1979; Browder 1976). Not that the event itself evoked such great interest, nor have many writers paid particularly close attention to what Hilbert had to say on that occasion. What mattered – both for the text and the larger context – came afterward. Mathematicians remember ICM II and Hilbert’s role in it for just one reason: this was the occasion when he unveiled a famous list of 23 problems, a challenge to those who wished to make names for themselves in …
<p>El análisis de manuales y la identificación de problemas de investigación en Didáctica de las Matemáticas</p>
2011
La ambigüedad del signo radical es un problema con raíces históricas que ha quedado recogido en una tradición de enseñanza reflejada en los manuales escolares. Como problema matemático ha sido resuelto, pero no como problema didáctico, ya que el signo radical presenta sutilezas conceptuales y operatorias cuya omisión en los manuales es a menudo causa de malentendidos y conflictos fuertemente arraigados. Algunos de esos malentendidos son un producto de la enseñanza tradicional reflejada en los manuales que ignora los desarrollos matemáticos actuales. En este artículo se utiliza el análisis textual y el epistemológico para presentar este problema en sus dimensiones matemática y didáctica. Ana…
Arithmetic Problems Formulation and Working Memory Load
1987
First, third, and fifth graders (French children in American-numbered grades) were asked to solve arithmetic problems in which an initial state was modified by two successive transformations. Three independent variables were manipulated systematically. First, the unknown state was either the final state (Sl) or the initial state (S2). Second, either the known state (01) or the transformations (02) appeared in the first place in the problem wording. Third, the question was either located at the end (Ql) or at the beginning (42) of the problem text. As anticipated, these modifications strongly affected the performances at every age: S1 appears clearly easier than S2; 0 1 leads to a better per…
Deformed quons and bi-coherent states
2017
We discuss how a q-mutation relation can be deformed replacing a pair of conjugate operators with two other and unrelated operators, as it is done in the construction of pseudo-fermions, pseudo-bosons and truncated pseudo-bosons. This deformation involves interesting mathematical problems and suggests possible applications to pseudo-hermitian quantum mechanics. We construct bi-coherent states associated to $\D$-pseudo-quons, and we show that they share many of their properties with ordinary coherent states. In particular, we find conditions for these states to exist, to be eigenstates of suitable annihilation operators and to give rise to a resolution of the identity. Two examples are discu…
Historical Origins of the nine-point conic -- The Contribution of Eugenio Beltrami
2020
In this paper, we examine the evolution of a specific mathematical problem, i.e. the nine-point conic, a generalisation of the nine-point circle due to Steiner. We will follow this evolution from Steiner to the Neapolitan school (Trudi and Battaglini) and finally to the contribution of Beltrami that closed this journey, at least from a mathematical point of view (scholars of elementary geometry, in fact, will continue to resume the problem from the second half of the 19th to the beginning of the 20th century). We believe that such evolution may indicate the steady development of the mathematical methods from Euclidean metric to projective, and finally, with Beltrami, with the use of quadrat…
Assessment Tests in the Mathematics Teaching Guides in Spain. Analysis of the Content Blocks and the Treatment of Arithmetic Word Problems
2021
The teaching guides that complement textbooks have key importance in the assessment of competence in problem solving, because these materials contain the assessment tools that teachers frequently use to quantify the achievements of their students. In this paper, we set two aims: to analyze which curriculum contents are given priority in the assessment tests of the teaching guides
Reasoning with paper and pencil: The role of inscriptions in student learning of geometric series
2009
The purpose of this article is to analyse how students use inscriptions as tools for thinking and learning in mathematical problem-solving activities. The empirical context is that of learning about geometric series in a small group setting. What has been analysed is how students made use of inscriptions, self-made as well as those provided by text books and teachers, and the role these inscriptions played in the coordination of students’ learning/communication. Through the use of inscriptions (made on the chalkboard and with paper and pencil), the students externalised their thinking while engaging in mathematical reasoning on the topic of geometric series. The inscriptions were significan…
Avances de investigación en educación matemática
2020
El fomento de la flexibilidad y adaptabilidad en resolución de problemas matemáticos favorece el desarrollo de la competencia matemática. En este estudio se describe y justifica el diseño de una secuencia de tareas de modelización que permite analizar la flexibilidad inter-tarea en los estudiantes. El objetivo central del estudio es analizar si los estudiantes son capaces de adaptar sus planes de resolución según aspectos relativos al contexto de la tarea, cambiando de estrategia de una tarea a otra, si estos aspectos varían. En el estudio han participado 110 estudiantes del grado de Maestro/a en Educación Primaria; los resultados permiten conocer en qué medida son flexibles los estudiantes…
Historical Events in the Background of Hilbert’s Seventh Paris Problem
2015
David Hilbert’s lecture, “Mathematical Problems,” [Hilbert 1900] delivered in Paris in 1900 at the Second International Congress of Mathematicians, has long been recognized as marking a milestone in the history of mathematics. Certainly for Hilbert himself, this marked the single greatest event and a true turning point in his storied career. When historians and mathematicians have written about the so-called Hilbert problems, they have usually looked forward into the twentieth century, sometimes by viewing their resolution as markers for mathematical progress.